100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

A sharp lower bound for the first (nonzero) Steklov eigenvalue

发布时间:2021-06-21 作者: 浏览次数:
Speaker: 夏超 DateTime: 2021年6月24日(周四)下午14:00-15:00
Brief Introduction to Speaker:

夏超,华中师范大学教授。

Place: 线上会议(会议地址请联系程亮老师获取)
Abstract:Escobar has conjectured that for a compact manifold with boundary which has nonnegative Ricci curvature and boundary principal curvatures bounded below by 1, the first (nonzero) Steklov eigenvalue is greater than or equal to 1,with equality holding only on a Euclidean ball. This conjecture is true in two dimensions due to Payne and Escobar. In this talk, we present a resolution to this conjecture in the case of nonnegative sectional curvature in any dimensions. We will also give a sharp comparison result between the first (nonzero) Steklov eigenvalue and the boundary first eigenvalue. Our tool is a weighted Reilly type formula due to Qiu-Xia and a Pohozaev type identity. The talk is based on a joint work with Changwei Xiong.
主站蜘蛛池模板: 宜都市| 清水河县| 隆林| 昭苏县| 柳河县| 娱乐| 太康县| 大城县| 通州区| 宁德市| 通化市| 北海市| 马山县| 伊金霍洛旗| 鹰潭市| 通海县| 正蓝旗| 新闻| 南川市| 诏安县| 衡阳县| 秦皇岛市| 肇庆市| 甘谷县| 和平区| 孙吴县| 陕西省| 荣成市| 汤原县| 嘉荫县| 清水河县| 莆田市| 济南市| 武陟县| 聂拉木县| 泽库县| 通江县| 丰城市| 莱西市| 如东县| 泸定县|