100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

RaSE: Random Subspace Ensemble Classification

发布时间:2021-06-21 作者: 浏览次数:
Speaker: 冯阳 DateTime: 2021年6月30日(周三)上午10:30-11:30
Brief Introduction to Speaker:

冯阳,哥伦比亚大学。

Place: 腾讯会议(会议号请联系晏挺老师获取)
Abstract:We propose a flexible ensemble classification framework,Random Subspace Ensemble (RaSE), for sparse classification. In the RaSE algorithm, we aggregate many weak learners, where each weak learner is a base classifier trained in a subspace optimally selected from a collection of random subspaces. To conduct subspace selection, we propose a new criterion, ratio information criterion (RIC), based on weighted Kullback-Leibler divergence. The theoretical analysis includes the risk and Monte-Carlo variance of the RaSE classifier,establishing the screening consistency and weak consistency of RIC,and providing an upper bound for the misclassification rate of the RaSE classifier. An array of simulations under various models and real-data applications demonstrate the effectiveness and robustness of the RaSE classifier and its iterative version in terms of low misclassification rate and accurate feature ranking. The RaSE algorithm is implemented in the R package RaSEn on CRAN.
主站蜘蛛池模板: 秭归县| 江陵县| 九江市| 宁安市| 育儿| 丹凤县| 南宁市| 海伦市| 杭锦后旗| 石屏县| 平和县| 留坝县| 海安县| 公安县| 北海市| 东乌| 新闻| 昌黎县| 安庆市| 南漳县| 松溪县| 宁海县| 尉氏县| 云南省| 英吉沙县| 肇州县| 宁都县| 潜山县| 行唐县| 明光市| 唐河县| 涟源市| 道孚县| 青海省| 泾川县| 聂拉木县| 涞水县| 民勤县| 佛坪县| 龙川县| 咸丰县|