100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

?标题:Some recent progress on permutation polynomials(IV)

发布时间:2022-07-23 作者: 浏览次数:
Speaker: 丁治国 研究员 DateTime: 2022.7.25(星期一上午)10:00-11:30
Brief Introduction to Speaker:


丁治国 研究员 单位:密西根大学


邀请人:罗金权

Place: 腾讯会议号:476-333-104 密码:无
Abstract:In this series of talks, we will introduce a general procedure for producing huge classes of permutation polynomials over F_{q^2} from any prescribed permutation rational function over F_q, and we will show that even the simplest permutation rational functions yield many interesting permutation polynomials. We will also classify permutation polynomials with certain forms using tools from algebraic geometry and group theory which have not previously been used in this topic. This is a joint work with Michael Zieve.
主站蜘蛛池模板: 乌什县| 灵武市| 德格县| 伊春市| 元江| 盘山县| 陆丰市| 黔江区| 沅江市| 桑植县| 汉沽区| 奉新县| 夏津县| 蕉岭县| 鸡东县| 建湖县| 思南县| 梓潼县| 沙湾县| 辉南县| 大石桥市| 蒲城县| 荔浦县| 正蓝旗| 临沂市| 汾阳市| 崇义县| 永仁县| 雅安市| 井冈山市| 阿拉善左旗| 渝北区| 鹤庆县| 奉新县| 河北区| 都昌县| 霍邱县| 阿城市| 沁阳市| 临夏市| 小金县|