100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Categorical actions and derived equivalences for finite odd-dimensional orthogonal groups

发布时间:2021-11-29 作者: 浏览次数:
Speaker: 李鹏程 DateTime: 2021年12月1日(周三)上午9:30-11:30和12月8日(周三)上午9:30-11:30
Brief Introduction to Speaker:

李鹏程,北京大学博士。

Place: 腾讯会议号:874-7362-4450
Abstract:In this paper we prove that Broue's abelian defect group conjecture is true for the finite odd-dimensional orthogonal groups SO2n+1(q), with q odd, at odd linear primes. We frist make use of the reduction theorem of Bonnafe-Dat-Rouquier to reduce the problem to isolated blocks. Then we construct a categorical action of a Kac-Moody algebra on the category of quadratic unipotent representations of the various groups SO2n+1(q) in non-defining characteristic, by extending the corresponding work of Dudas-Varagnolo-Vasserot for unipotent representations. To obtain derived equivalences of blocks and their Brauer correspondents, we turn to investigate a special kind of blocks, called isolated Rouquier blocks. Finally, the desired derived equivalence is guaranteed by the work of Chuang-Rouquier showing that categorical actions provide derived equivalences between weight spaces, which are exactly the isolated-blocks in our situation. This is a joint work with Yanjun Liu and Jiping Zhang.
主站蜘蛛池模板: 雷波县| 宁陵县| 宜兰市| 云梦县| 武冈市| 赫章县| 包头市| 沧州市| 芜湖市| 张家口市| 长沙县| 酒泉市| 醴陵市| 达孜县| 襄垣县| 宁阳县| 泸西县| 阿鲁科尔沁旗| 苗栗市| 南部县| 余庆县| 诸城市| 分宜县| 即墨市| 谢通门县| 密云县| 古交市| 林芝县| 涟源市| 濮阳县| 海宁市| 开鲁县| 阆中市| 依兰县| 于田县| 陆良县| 云浮市| 田阳县| 井研县| 虎林市| 油尖旺区|