100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Analysis and algorithms for some compressed sensing models based on the ratio of $\ell_1$ and $\ell_2$ norms

发布时间:2021-09-16 作者: 浏览次数:
Speaker: 曾燎原 DateTime: 2021年9月24日(星期五)下午 15:00--16:00
Brief Introduction to Speaker:

曾燎原,香港理工大学。

Place: 腾讯会议(会议号请联系张雄军老师)
Abstract:Recently, the ratio of $\ell_1$ and $\ell_2$ norms has been proposed as a sparsity inducing function for noiseless compressed sensing (CS). In this talk, we further study properties of such model in the noiseless setting, and propose an algorithm for minimizing the ratio of $\ell_1$ and $\ell_2$ when the measurements are subject to noise. Specifically, we first present conditions that guarantee solution existence for these models. We then derive an explicit Kurdyka-{\L}ojasiewicz exponent for the model in the noiseless setting, which enables us to deduce linear convergence of a recently proposed Dinkelbach type algorithm for the noiseless model. Furthermore, we extend this algorithm to deal with noisy scenario by incorporating moving-balls-approximation techniques, and analyze its convergence. Finally, we present numerical tests on CS problems with Cauchy measurement noise and badly scaled CS problems with Gaussian measurement noise.
主站蜘蛛池模板: 锦州市| 威海市| 阳山县| 睢宁县| 堆龙德庆县| 搜索| 九龙县| 萨嘎县| 汕尾市| 吉林省| 贡觉县| 河津市| 项城市| 古交市| 彭泽县| 望谟县| 宜兰市| 澄迈县| 吉木萨尔县| 大悟县| 和田县| 修水县| 巢湖市| 赫章县| 于田县| 伊宁县| 静安区| 张家港市| 滨州市| 华阴市| 手游| 阿克苏市| 和龙市| 潼南县| 三原县| 壤塘县| 贵定县| 高唐县| 磴口县| 页游| 盐津县|