100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Fast Network Community Detection with Profile-Pseudo Likelihood Methods

发布时间:2021-06-15 作者: 浏览次数:
Speaker: 张菁菲 DateTime: 2021年6月18日(周五)上午9:30
Brief Introduction to Speaker:

张菁菲,迈阿密大学。

Place: 腾讯会议(会议号请联系胡建伟老师获?。?/td>
Abstract:The stochastic block model is one of the most studied network models for community detection and fitting its likelihood function on large-scale networks is known to be challenging. One prominent work that overcomes this computational challenge is Amini et al. (2013), which proposed a fast pseudo-likelihood approach for fitting stochastic block models to large sparse networks. However, this approach does not have convergence guarantee, and may not be well suited for small and medium scale networks. In this article, we propose a novel likelihood-based approach that decouples row and column labels in the likelihood function, enabling a fast alternating maximization. This new method is computationally efficient, performs well for both small- and large-scale networks, and has provable convergence guarantee. We show that our method provides strongly consistent estimates of communities in a stochastic block model.
主站蜘蛛池模板: 镇巴县| 永平县| 蒙城县| 同德县| 固安县| 新源县| 建平县| 绥宁县| 延寿县| 盐津县| 克山县| 滨海县| 咸丰县| 乌兰察布市| 神木县| 鄂托克前旗| 三明市| 西平县| 惠安县| 宁晋县| 高密市| 和田市| 新乡市| 保亭| 舒兰市| 昌乐县| 青冈县| 盱眙县| 泰兴市| 廊坊市| 河东区| 宣化县| 农安县| 丰宁| 思茅市| 临夏市| 清徐县| 科技| 五家渠市| 洞口县| 临颍县|