100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

A Momentum Block-Randmoized Stochastic Algorithm for Low-Rank Tensor CP Decomposition

发布时间:2021-04-15 作者: 浏览次数:
Speaker: 崔春风 DateTime: 2021年4月23号(周五)下午2:00-3:00
Brief Introduction to Speaker:

崔春风,北京航空航天大学教授。

Place: 腾讯会议(会议号请联系张雄军老师索取)
Abstract:The block-randomized stochastic algorithm has shown its power in handling high-dimensional low-tank tensor canonical polyadic decomposition (CPD). Since computing CPD is computationally expensive, there is great interest in speeding up the convergence. In this talk, we introduce a momentum accelerated version of the block-randomized stochastic gradient descent (SGD) algorithm for low-rank tensor CPD. Under some mild conditions, we show the global convergence to the stationary point of the fixed stepsize algorithm for this nonconvex nonsmooth optimization problem. Compared with the algorithms without momentum, the preliminary numerical experiments for the synthetic and real data demonstrated that our accelerated algorithms are efficient, and can achieve better performance in terms of objection function value, mean squared error, and structural similarity value. This talk is based on the joint work with Qingsong Wang and Deren Han.
主站蜘蛛池模板: 乳山市| 玉山县| 桐庐县| 宁强县| 同德县| 萨迦县| 新丰县| 白玉县| 德阳市| 嘉峪关市| 抚宁县| 富川| 临沂市| 津市市| 清徐县| 临泽县| 祥云县| 聊城市| 云龙县| 乃东县| 正宁县| 邯郸市| 旅游| 边坝县| 兴义市| 博罗县| 六盘水市| 合川市| 马山县| 华宁县| 湖南省| 康定县| 秀山| 廊坊市| 汾西县| 南和县| 木里| 伽师县| 宜州市| 天全县| 黔东|