100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
数苑经纬讲坛
当前位置: 学院主页 > 科学研究 > 数苑经纬讲坛 > 正文

数苑经纬讲坛(47):Adjacent cubic vertices in a minimal brick

发布时间:2025-11-17 作者: 浏览次数:

报告时间:2025年11月19日(周三)上午9:00

报告地点:Meeting number (access code): 2533 337 8417;Meeting password: Aw69JAHWQq8

报告人简介: 陈冠涛,美国佐治亚州立大学教授、Graphs and Combinatorics 主编(Editor-in-Chief)

报告摘要:A connected graph G is called a matching covered graph if E(G)= and every edge E(G) is contained in a perfect matching, a matching that covers every vertex of G. A matching covered graph G is bicritical if, for any two distinct vertices xy V (G), the graph G x y has a perfect matching. A 3-connected bicritical graph is called a brick, and it is minimal if the removal of any edge from G results in a graph that is no longer a brick. Lovasz conjectured that every minimal brick contains two adjacent cubic vertices. In this talk, we show that every minimal brick contains two cubic vertices whose distance is at most 2. Additionally, we verify Lovaszs conjecture for minimal bricks with an average degree of at least 45. As a corollary, we deduce that every minimal brick contains two adjacent vertices of degree at most 5.


主站蜘蛛池模板: 安阳县| 寻乌县| 哈巴河县| 新兴县| 禄丰县| 娱乐| 邢台县| 米脂县| 兖州市| 邯郸县| 祁阳县| 木兰县| 修文县| 客服| 舞钢市| 台湾省| 南召县| 仪陇县| 阿拉尔市| 老河口市| 巩留县| 光泽县| 衡山县| 古丈县| 新乡县| 虞城县| 金乡县| 商河县| 广水市| 稻城县| 尼木县| 达孜县| 平安县| 太谷县| 河曲县| 皋兰县| 兴海县| 南丹县| 资中县| 高青县| 南宫市|