100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
数苑经纬讲坛
当前位置: 学院主页 > 科学研究 > 数苑经纬讲坛 > 正文

数苑经纬讲坛(28):Gradient Orthogonal Basis Decomposition?for High-Dimensional Factor in Binary Outcomes

发布时间:2025-09-18 作者: 浏览次数:

报告时间:2025年09月22日 (周一)上午09:00-10:00

报告地点:腾讯会议号:220265323

报告人:李元章教授 乔治华盛顿大学

摘要:Identifying significant factors from high-dimensional datasets remains a critical challenge in biomedical research, particularly when the outcome of interest is binary. We propose a novel approach using Gradient Orthogonal Basis (GOB) decomposition to efficiently reduce dimensionality and select informative variables in logistic regression models. The method decomposes the factor space into gradient-based orthogonal directions, capturing directions with maximal discriminatory power while controlling for noise and correlation structures. Model fitting proceeds via conditional logistic regression and generalized estimating equations (GEE), allowing for flexible handling of correlation and clustering. Variable selection is guided through statistical tests including Wald, Score, AIC, and QIC, alongside interaction assessments and sum-based statistics for robustness.

We apply our method to biomarker datasets involving schizophrenia and bipolar disorder, where it demonstrates improved power, interpretability, and consistency over traditional penalized or projection-based methods. Simulation studies further validate its effectiveness in scenarios with complex correlation patterns and moderate sample sizes. Our results highlight the GOB framework as a promising direction for interpretable and statistically rigorous modeling of high-dimensional binary outcome data.


主站蜘蛛池模板: 嘉黎县| 武清区| 进贤县| 山西省| 内丘县| 鄂伦春自治旗| 民乐县| 循化| 邹城市| 周口市| 望奎县| 麦盖提县| 方正县| 临安市| 巨鹿县| 乌审旗| 合肥市| 岳西县| 灵宝市| 乾安县| 三台县| 昆明市| 禹州市| 南城县| 临漳县| 沙湾县| 石渠县| 安福县| 汾阳市| 鄯善县| 衡阳县| 呼和浩特市| 浮梁县| 昌吉市| 河南省| 赤城县| 英德市| 龙南县| 炉霍县| 呼图壁县| 黑水县|