100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
数苑经纬讲坛
当前位置: 学院主页 > 科学研究 > 数苑经纬讲坛 > 正文

数苑经纬讲坛(24):Chebotarev's theorem ?for groups of order $pq$ ?and an uncertainty principle

发布时间:2025-09-04 作者: 浏览次数:

报告时间: 202599日(周二)上午 11:00-12:00

报告地点:国交2号楼315会议室

报告人:Prof. Maria  Loukaki 克里特大学(Crete University

摘要:Let $p$ be a prime number and $\zeta_p$ a primitive $p$-th root of unity. Chebotarev's theorem states that every square submatrix of the $p \times p$ matrix $(\zeta_p^{ij})_{i,j=0}^{p-1}$ is non-singular.  In this talk we will show that a similar property holds for principal  submatrices of $(\zeta_n^{ij})_{i,j=0}^{n-1}$, when  $n=pr$ is the product of two distinct primes, and $p$ is a large enough prime that has order $r-1$ in $\mathbf{Z}_r^*$. As an application,  an uncertainty principle for cyclic groups of order $n$ is established when $n=pr$ as described above.