100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Deep Mutual Density Ratio Estimation with Bregman Divergence and Its Applications

发布时间:2025-07-05 作者: 浏览次数:
Speaker: ?孙六全 DateTime: 2025年7月7日(周一)下午14:00-15:00
Brief Introduction to Speaker:

孙六全 ,中国科学院数学与系统科学研究院

Place: 国交2号楼315
Abstract:This talk introduces a unified approach to estimating the mutual density ratio, defined as the ratio between the joint density function and the product of the individual marginal density functions of two random vectors. It serves as a fundamental measure for quantifying the relationship between two random vectors. Our method uses Bregman divergence to construct the objective function and leverages deep neural networks to approximate the logarithm of the mutual density ratio. We establish a non-asymptotic error bound for our estimator, achieving the optimal minimax rate of convergence under a bounded support condition. Additionally, our estimator mitigates the curse of dimensionality when the distribution is supported on a lower-dimensional manifold. We extend our results to overparameterized neural networks and the case with unbounded support. Applications of our method include conditional probability density estimation, mutual information estimation, and independence testing. Simul...
主站蜘蛛池模板: 琼中| 石门县| 神农架林区| 松原市| 湟中县| 中方县| 吕梁市| 澄江县| 山东省| 漳州市| 垫江县| 新晃| 青州市| 庆城县| 宁海县| 云龙县| 武清区| 桓台县| 梁山县| 西吉县| 静安区| 栖霞市| 三亚市| 库尔勒市| 新沂市| 屏南县| 阳谷县| 洛隆县| 佛学| 永吉县| 怀远县| 鹤山市| 若尔盖县| 白水县| 潼关县| 施秉县| 纳雍县| 县级市| 巫山县| 潮州市| 灵川县|