100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Sharp quantitative stability for fractional Sobolev inequalities and the Yamabe problem under bubbling

发布时间:2024-11-18 作者: 浏览次数:
Speaker: 陈海霞 DateTime: 2024年11月21日(周四) 下午 15:00-16:00
Brief Introduction to Speaker:

博士毕业于华中师范大学,博士期间曾在意大利罗马第一大学联合培养,目前在韩国汉阳大学进行博士后研究。主要研究方向是非线性椭圆型偏微分方程、非线性泛函分析,已在JFA, Nonlinearity等期刊上发表多篇学术论文。曾担任过国际期刊NoDEAPhys. D 审稿人。


Place: 腾讯会议:206-422-388
Abstract:The quantitative stability for sharp inequalities in analysis and geometry is a fascinating subject that has attracted many researchers for decades. Since the seminar works of Brezis and Lieb (1985), many results have appeared dealing with the properties of the Sobolev inequalities, their variants, harmonic maps, etc. In contrast, the quantitative stability for the solutions to the Euler-Lagrange equations induced by sharp inequalities has been less understood. Nonetheless, it was completely analyzed in a Hilbertian Sobolev setting recently, thanks to the contributions of Ciraolo et al. (2018 IMRN), Figalli and Glaudo (2020 ARMA), and Deng et al. (2024 DUKE). In this talk, I will introduce my recent works on quantitative stability, collaborated with S. Kim (Hanyang U.) and J. Wei (CUHK) for the fractional Lane-Emden equation of all possible orders and the Yamabe problem.
主站蜘蛛池模板: 峡江县| 盐边县| 五家渠市| 股票| 黎平县| 南漳县| 泰兴市| 武安市| 来宾市| 鹿邑县| 土默特右旗| 玛曲县| 太湖县| 广丰县| 新平| 福建省| 宁海县| 许昌市| 贵定县| 凉山| 鸡泽县| 宝清县| 烟台市| 丹东市| 阿拉善盟| 西城区| 隆化县| 浪卡子县| 保亭| 商洛市| 洛隆县| 宝丰县| 昆明市| 白水县| 揭阳市| 抚顺县| 临漳县| 利川市| 前郭尔| 诸暨市| 富民县|