100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

数学物理及偏微分方程国际系列论坛(7): Scattering Theory of Linear and Nonlinear Waves: A Unified New Paradigm (Ⅱ)

发布时间:2024-09-14 作者: 浏览次数:
Speaker: Avy Soffer DateTime: 2024年7月18日(周四) 上午8:00-9:00(北京时间)
Brief Introduction to Speaker:

 Avy Soffer,美国罗格斯大学数学系(Rutgers University)杰出教授,美国数学会会士,主要从事数学物理与偏微方程的研究,其研究成果在Ann. Math., JAMS, Invent. Math. Duke J. Math.等国际著名期刊发表论文100余篇。学术上2006年在西班牙国际数学家大会上(ICM)作45分钟特邀报告,也曾担任GAFA杂志的编委,现为Letter in Math. Phy.杂志编委。

Place: Zoom link: https://rutgers.zoom.us/j/93162693013?
Abstract:I will present a new approach to Mathematical Scattering of multichannel Dispersive and Hyperbolic Equations. In this approach we identify the large time behavior of such equations, both linear and non-linear, for general (large) data and interactions terms which can be space-time dependent. In particular, for the NLS equations with spherically symmetric data and Interaction terms, we prove that all global solutions in H^1 converge to a smooth and localized function plus a free wave, in 5 or more dimensions. Similar result holds for 3,4 dimensions, though the argument proving localization is different. We also show similar results in any dimension for localized type of interactions, provided they decay fast enough. We show breakdown of the standard Asymptotic Completeness conjecture if the interaction is time dependent and decays like r^{-2} at infinity. Many of these results extend to the non-radial case, for NLS, NLKG and Bi-harmonic NLS in three or more dimensions. Furthermore...
主站蜘蛛池模板: 阳城县| 德令哈市| 吴江市| 石家庄市| 禄丰县| 德州市| 延吉市| 鄯善县| 南召县| 浦江县| 赫章县| 香港| 华蓥市| 镇巴县| 东宁县| 十堰市| 全州县| 东海县| 怀远县| 海门市| 洪江市| 离岛区| 任丘市| 元谋县| 安乡县| 赣榆县| 大关县| 溆浦县| 开鲁县| 都兰县| 通化市| 新田县| 台北县| 平安县| 日喀则市| 忻州市| 昭通市| 香河县| 红桥区| 日照市| 宣武区|