100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Persistence of heterodimensional cycles

发布时间:2024-05-27 作者: 浏览次数:
Speaker: Dongchen Li DateTime: 2024年5月31日(周五)晚上20:00-21:00
Brief Introduction to Speaker:

Dongchen Li,Imperial College London, 研究员

Place: 腾讯会议:763-648-180
Abstract:The existence of heterodimensional cycles is believed to be one of two basic mechanisms leading to non-hyperbolicity, where the other one is the existence of homoclinic tangencies. We show that any $C^r$ ($r=2,\ldots,\infty,\omega$) system having a heterodimensional cycle can be approximated in the $C^r$ topology by systems having robust heterodimensional cycles. This implies a heterodimensional counterpart to the well-known Newhouse theorem that every homoclinic tangency is C^r close to robust homoclinic tangencies. The result is based on the observation that arithmetic properties of moduli of topological conjugacy of systems with heterodimensional cycles determine the emergence of Bonatti-D\'iaz blenders.
主站蜘蛛池模板: 布尔津县| 湟源县| 中山市| 南丹县| 彭山县| 康保县| 钟山县| 五峰| 桃园县| 莱西市| 五台县| 琼海市| 社旗县| 抚州市| 新竹市| 加查县| 纳雍县| 保定市| 长武县| 平果县| 岫岩| 隆回县| 长兴县| 谢通门县| 余姚市| 申扎县| 襄垣县| 广东省| 安化县| 呼和浩特市| 龙胜| 册亨县| 奉节县| 宁城县| 黄浦区| 永平县| 游戏| 肃宁县| 嵊州市| 封丘县| 稻城县|