100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Optimal Weighted Random Forests

发布时间:2024-05-16 作者: 浏览次数:
Speaker: 喻达磊 DateTime: 2024年5月18日(周六)上午10:50 - 11:50
Brief Introduction to Speaker:

喻达磊,博士(香港城市大学),西安交通大学数学与统计学院教授,博士生导师。研究领域为模型选择、模型平均、估计理论和统计极限理论等,一些成果发表在JRSS-BJASAJBES和中国科学:数学上。入选了国家高层次青年人才计划和西安交通大学校内青拔A类支持计划。

Place: 6号楼二楼报告厅
Abstract:The random forest (RF) algorithm has become a very popular prediction method for its great flexibility and promising accuracy. In RF, it is conventional to put equal weights on all the base learners (trees) to aggregate their predictions. However, the predictive performances of different trees within the forest can be very different due to the randomization of the embedded bootstrap sampling and feature selection. In this paper, we focus on RF for regression and propose two optimal weighting algorithms, namely the 1 Step Optimal Weighted RF and 2 Steps Optimal Weighted RF, that combine the base learners through the weights determined by weight choice criteria. Under some regularity conditions, we show that these algorithms are asymptotically optimal in the sense that the resulting squared loss and risk are asymptotically identical to those of the infeasible but best possible weighted RF. Numerical studies conducted on real-world data sets and semi-synthetic data sets indicate that t...
主站蜘蛛池模板: 腾冲县| 岚皋县| 台东县| 阿图什市| 闵行区| 新泰市| 定远县| 深水埗区| 金堂县| 汝阳县| 唐海县| 高清| 新余市| 永川市| 灵丘县| 临沂市| 蒙阴县| 从化市| 哈巴河县| 阿克陶县| 兴仁县| 青龙| 靖远县| 上饶县| 湛江市| 全南县| 吉首市| 伽师县| 延边| 新和县| 永丰县| 酉阳| 淳安县| 滨海县| 林西县| 宝兴县| 古田县| 涪陵区| 湖南省| 西华县| 漯河市|