100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Quantitative stability of Geometric functional inequality.

发布时间:2024-01-02 作者: 浏览次数:
Speaker: 陈露 DateTime: 2024年1月9日(周二)上午10:00-11:00
Brief Introduction to Speaker:

陈露,北京理工大学长聘副教授,博导。2018年博士毕业于北京师范大学,在 Moser-Truding-Adams不等式的最佳常数和极值问题、几何不等式的量化稳定性,指数临界增长的薛定谔方程基态解、双曲空间上波方程的散射理论等方面取得了重要的进展,相关结果发表在Proc. Lond. Math. Soc.Adv.Math,  Trans. AMS,  J. Funct. AnalRev. Mat. Iberoam等国际学术期刊。


Place: 6号楼2楼报告厅
Abstract:In this talk, we will first discuss the quantitative stability for the Hardy-Littlewood-Sobolev (HLS) inequalities. By establishing the relation between the stability of HLS inequalities and the stability of fractional Sobolev inequalities, we also give the quantitative stability of the fractional Sobolev inequalities. Finally, we also discuss the optimal asymptotic lower bound for fractional Sobolev inequality and Log Sobolev inequality on the sphere. Our proofs are based on the competing symmetries, the continuous Steiner symmetrization inequality for the HLS integral, complicated orthogonal estimate, and the dual stability theory. This talk is based on the joint work with Prof. Lu from Connecticut University and Prof. Tang from Beijing Normal University.
主站蜘蛛池模板: 珲春市| 南召县| 泸溪县| 定远县| 华池县| 高唐县| 平远县| 肇源县| 大埔区| 宣化县| 舞阳县| 江安县| 哈巴河县| 乌什县| 湖口县| 大厂| 宁乡县| 错那县| 禄丰县| 苍南县| 中卫市| 治多县| 乳山市| 永州市| 延边| 沙洋县| 盐亭县| 台山市| 平山县| 宁德市| 塔河县| 天水市| 宜良县| 无为县| 临武县| 徐州市| 霍山县| 龙岩市| 呼和浩特市| 澎湖县| 德钦县|