100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

The Green tensor of Stokes system in R_+^n

发布时间:2020-11-23 作者: 浏览次数:
Speaker: 赖柏顺 DateTime: 2020年11月26日(周四)上午9:00-10:00
Brief Introduction to Speaker:

赖柏顺,现为河南大学教授,博士生导师,长期从事非线性偏微分方程的理论研究,其研究领域包括不可压缩Navier-Stokes方程自相似解的存在性和唯一性,弱解正则性;椭圆方程解的渐近性态、稳定性、解集的分支现象、正则性。在国际刊物上发表SCI论文30余篇,主持国家课题青年基金、面上项目各一项。其主要研究成果发表在 Advances in Mathematics, Siam J. Math. Anal, Nonlinearity, Calc. Var. Partial Differential Equations 等国际刊物上。

 

Place: 腾讯会议(会议号请联系王春花老师索取)
Abstract:We prove the first ever pointwise estimates of the (unrestricted) Green tensor and the associated pressure tensor of the nonstationary Stokes system in the half-space, for every space dimension greater than one. The force field is not necessarily assumed to be solenoidal. The key is to find a suitable Green tensor formula which maximizes the tangential decay, showing in particular the integrability of Green tensor derivatives. With its pointwise estimates, we show the symmetry of the Green tensor, which in turn improves pointwise estimates. We also study how the solutions converge to the initial data, and the (infinitely many) restricted Green tensors acting on solenoidal vector fields. As applications, we give new proofs of existence of mild solutions of the Navier-Stokes equations in L^q, pointwise decay, and uniformly local L^q spaces in the half-space. This is a joint work with Kyungkeun Kang, Chen-Chih Lai and Tai-Peng Tsai.
主站蜘蛛池模板: 平谷区| 萨迦县| 资源县| 防城港市| 阜南县| 长宁区| 建始县| 玉屏| 淳安县| 辰溪县| 华亭县| 榆树市| 通河县| 伊春市| 翼城县| 盖州市| 衡阳县| 重庆市| 额敏县| 逊克县| 元朗区| 达尔| 保德县| 灵寿县| 交口县| 崇信县| 驻马店市| 太康县| 济宁市| 弋阳县| 嘉荫县| 德令哈市| 九台市| 博乐市| 铜川市| 樟树市| 萝北县| 延川县| 绵阳市| 浦城县| 乌审旗|