100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Subdata selection for subgroup analysis

发布时间:2019-11-22 作者: 浏览次数:
Speaker: Min Yang DateTime: 2019年11月27日(星期三)上午10:30—11:30
Brief Introduction to Speaker:

Prof.  Min Yang,University of Illinois at Chicago。

Place: 6号楼二楼报告厅
Abstract:How to implement data reduction to draw useful information from big data is a hot spot of modern scientific research. One attractive approach is data reduction through subdata selection. Typically, this approach is based on some strong model assumption: data follows one specific statistical model. Big data is complexity and it may not be the best to model the data using one specific model. Instead of assuming one specific model for all population, subgroup analysis assumes there is a hidden group structure and each group has its own model. While subgroup analysis addresses the balance of the model complexity and interpretability efficiently, one disadvantage of this approach is the computation complexity. Even when the sample size is moderate, it will take a considerate computation resource to analyze the data. How to select informative subdata under subgroup analysis? In this talk, a new framework is proposed to address this issue.
主站蜘蛛池模板: 高碑店市| 普安县| 乌鲁木齐县| 泸溪县| 兰坪| 贡觉县| 北票市| 蓝田县| 永丰县| 南丹县| 长丰县| 资阳市| 武安市| 天长市| 景泰县| 梧州市| 浪卡子县| 靖边县| 淮安市| 双峰县| 贡嘎县| 新丰县| 礼泉县| 香格里拉县| 巴东县| 双辽市| 固安县| 松原市| 东乌珠穆沁旗| 清水县| 乐昌市| 全椒县| 赤峰市| 门源| 深泽县| 台湾省| 区。| 交口县| 青神县| 陆丰市| 株洲市|