100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Large-Scale Covariate Assisted Two-Sample Inference under Dependence

发布时间:2019-11-01 作者: 浏览次数:
Speaker: 朱文圣 DateTime: 2019-11-1 下午3:00
Brief Introduction to Speaker:

朱文圣,东北师范大学,教授。

Place: 六号楼2楼报告厅
Abstract:The problems of large-scale two-sample inference often arise from the statistical analysis of “high throughput” data. The conventional multiple testing procedures for large-scale two-sample inference usually suffer from substantial loss of testing efficiency when conducting numerous two-sample t-tests directly. To some extent, this is due to the ignorance of sparsity information in large-scale two-sample inference. Moreover, in practice, the two-sample tests commonly have local correlations and neglecting the dependence structure in the two-sample tests may decrease the statistical accuracy in multiple testing. Therefore it is imperative to develop a multiple testing procedure which can not only take into account the sparsity information but also accommodate the dependence structure among the tests. To address the aforementioned important issues, we first introduce a novel dependence model to allow for sparsity information and to characterize the dependence structure among the tes...
主站蜘蛛池模板: 道真| 安顺市| 大渡口区| 榕江县| 休宁县| 台南县| 望江县| 怀来县| 长武县| 呼图壁县| 田林县| 溆浦县| 阳城县| 长沙市| 清原| 高淳县| 登封市| 金川县| 安吉县| 茂名市| 盐池县| 昌图县| 浙江省| 清镇市| 山阳县| 江油市| 英吉沙县| 延川县| 宝兴县| 阿瓦提县| 四子王旗| 舒城县| 将乐县| 郯城县| 武夷山市| 凉城县| 丰原市| 镇安县| 广东省| 奉化市| 山西省|