100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Bifurcations of Travelling Wave Solutions for Fully Nonlinear Water Waves with Surface Tension in the Generalized Serre-Green-Naghdi Equations

发布时间:2019-09-17 作者: 浏览次数:
Speaker: 李继彬 DateTime: 2019年9月19日(周四)上 午 8:30-9:30
Brief Introduction to Speaker:

 李继彬,华侨大学,教授。

Place: 六号楼二楼报告厅
Abstract:For the generalized Serre-Green-Naghdi equations with surface tension, by using the methodologies of dynamical systems and singular traveling wave theory developed Li & Chen [2007] to their travelling wave systems, in different parameter conditions of the parameter space, all possible bounded solutions (solitary wave solutions, kink wave solutions, peakons, pseudo-peakons and periodic peakons as well as compactons) are obtained. More than 26 explicit exact parametric representations are given. It is interesting to find that this fully nonlinear water waves equation has coexistence of uncountably infinitely many smooth solitary wave solutions or uncountably infinitely many pseudo-peakon solutions with periodic solutions or compacton solutions. Differing from the well-known peakon solution of the Camassa-Holm equation, the generalized Serre-Green-Naghdi equations have four new forms of peakon solutions.
主站蜘蛛池模板: 广南县| 南通市| 江永县| 得荣县| 巩义市| 芮城县| 新巴尔虎左旗| 固安县| 迭部县| 寻乌县| 巴塘县| 大城县| 海盐县| 临桂县| 乐亭县| 上蔡县| 开远市| 大化| 池州市| 清涧县| 静海县| 嵊州市| 灵璧县| 信阳市| 谢通门县| 阿图什市| 金塔县| 唐海县| 丹凤县| 琼结县| 班戈县| 合作市| 五家渠市| 彭水| 张家口市| 阿拉善盟| 邵武市| 瑞金市| 辉县市| 上林县| 高碑店市|