100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Boundary operator associated to $\sigma_k$ curvature

发布时间:2019-06-17 作者: 浏览次数:
Speaker: Yi Wang, Professor DateTime: 2019年6月28日(周五)下午3:00-4:00
Brief Introduction to Speaker:

Yi Wang, Professor, Johns Hopkins University, USA

Place: 六号楼二楼报告厅
Abstract:On a Riemannian manifold $(M, g)$, the $\sigma_k$ curvature is the $k$-th elementary symmetric function of the eigenvalues of the Schouten tensor $A_g$. It is known that the prescibing $\sigma_k$ curvature equation on a closed manifold without boundary is variational if k=1, 2 or $g$ is locally conformally flat; indeed, this problem can be studied by means of the energy $\int \sigma_k(A_g) dv_g$. We construct a natural boundary functional which, when added to this energy, yields as its critical points solutions of prescribing $\sigma_k$ curvature equations with general non-vanishing boundary data. Moreover, we prove that the new energy satisfies the Dirichlet principle. If time permits, I will also discuss applications of our methods. This is joint work with Jeffrey Case.
主站蜘蛛池模板: 枣庄市| 遂平县| 改则县| 宁南县| 诸暨市| 永善县| 新和县| 剑阁县| 漠河县| 南充市| 九寨沟县| 确山县| 嘉黎县| 南昌县| 夏河县| 建昌县| 松桃| 屯昌县| 平塘县| 沧州市| 石门县| 金堂县| 陕西省| 得荣县| 富平县| 祁阳县| 宜宾市| 贵德县| 定结县| 枣阳市| 封丘县| 松滋市| 安阳县| 石景山区| 睢宁县| 英超| 潞西市| 诏安县| 星座| 会昌县| 宜州市|