100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Bayesian Adaptive Lasso for Additive Hazard Regression with Current Status Data

发布时间:2019-06-13 作者: 浏览次数:
Speaker: 王纯杰 DateTime: 2019年6月17日(周一)下午3:30-4:15
Brief Introduction to Speaker:

王纯杰,长春工业大学基础科学学院,院长,教授。

Place: 六号楼二楼报告厅
Abstract:Variable selection is a crucial issue in model building and it has received considerable attention in the literature of survival analysis. However, available approaches in this direction have mainly focused on time-to-event data with right censoring. Moreover, a majority of existing variable selection procedures for survival models are developed in a frequentist framework. In this article, we consider additive hazards model in the presence of current status data. We propose a Bayesian adaptive least absolute shrinkage and selection operator procedure to conduct a simultaneous variable selection and parameter estimation. Efficient Markov chain Monte Carlo methods are developed to implement posterior sampling and inference. The empirical performance of the proposed method is demonstrated by simulation studies. An application to a study on the risk factors of heart failure disease for type 2 diabetes patients is presented.
主站蜘蛛池模板: 凌源市| 安福县| 河东区| 枣庄市| 太康县| 仙居县| 绥芬河市| 海城市| 股票| 恩平市| 江阴市| 彭泽县| 全南县| 庐江县| 巴林右旗| 石棉县| 太原市| 江安县| 南华县| 广饶县| 太仓市| 柘城县| 当阳市| 恩施市| 辰溪县| 盐池县| 鄂托克旗| 双江| 呼伦贝尔市| 武穴市| 外汇| 禄丰县| 宝山区| 阿城市| SHOW| 冀州市| 临沭县| 囊谦县| 钟山县| 永城市| 富民县|