100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Fusion rules for $\mathbb{Z}_{2}$-orbifolds of affine and parafermion vertex operator algebras

发布时间:2019-05-20 作者: 浏览次数:
Speaker: 姜翠波 DateTime: 2019年5月23日(周四)上午10:30-11:30
Brief Introduction to Speaker:

姜翠波上海交通大学

Place: 六号楼四楼会议室
Abstract:This talk is about the orbifold theory of affine and parafermion vertex operator algebras. It is known that the parafermion vertex operator algebra $K(sl_2,k)$ associated to the integrable highest weight modules for the affine Kac-Moody algebra $A_1^{(1)}$ is the building block of the general parafermion vertex operator $K(\mathfrak{g},k)$ for any finite dimensional simple Lie algebra $\mathfrak{g}$ and any positive integer $k$. We first classify the irreducible modules of $\Z_{2}$-orbifold of the simple affine vertex operator algebra of type $A_1^{(1)}$ and determine their fusion rules. Then we study the representations of the $\Z_{2}$-orbifold of the parafermion vertex operator algebra $K(sl_2,k)$, we give the quantum dimensions, and more technically, fusion rules for the $\mathbb{Z}_{2}$-orbifold of the parafermion vertex operator algebra $K(sl_2,k)$ are completely determined. This talk is based on joint work with Wang Qing.
主站蜘蛛池模板: 鹤峰县| 柏乡县| 金秀| 蒲江县| 永仁县| 武汉市| 云霄县| 鄂托克前旗| 英德市| 镇赉县| 大邑县| 荣昌县| 东城区| 广丰县| 邛崃市| 天全县| 山阳县| 瓦房店市| 成武县| 沙雅县| 巴彦淖尔市| 内黄县| 镇雄县| 台北县| 林西县| 双辽市| 定陶县| 连云港市| 宜州市| 治多县| 木里| 雷山县| 浪卡子县| 莫力| 怀柔区| 专栏| 昌吉市| 深水埗区| 山西省| 巴彦淖尔市| 保亭|