100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Classification of Gradient Shrinking Ricci Solitons

发布时间:2018-09-03 作者: 浏览次数:
Speaker: 李小龙 博士 DateTime: 2018年9月6日(周四)下午2:50-3:50
Brief Introduction to Speaker:

李小龙博士,University of California at Irvine。

Place: 6号楼二楼报告厅
Abstract: Three-dimensional manifolds are well-understood via Ricci flow by the work of Hamilton and Perelman. Classification of three-dimensional Shrinking Ricci solitons played an significant role in the work of Perelman. In this talk, I will give an introduction to shrinking Ricci solitons and survey many classification results obtained in recent years, in particular in two, three, and four dimensions. I will present several results if time permits: a complete classification of three-dimensional gradient shrinking Ricci solitons due to Ni and Wallach, a complete classification of four-dimensional shrinking Ricci solitons with nonnegative isotropic curvature due to Ni, Wang and myself, a partial classification of four-dimensional shrinking Ricci solitons with half positive isotropic curvature.
主站蜘蛛池模板: 龙海市| 黄陵县| 高雄县| 酒泉市| 行唐县| 远安县| 永州市| 连平县| 公主岭市| 永宁县| 兴山县| 鹤庆县| 滁州市| 沿河| 泌阳县| 阿拉善左旗| 天柱县| 仪征市| 巴中市| 酉阳| 海口市| 汾阳市| 荆门市| 锡林郭勒盟| 定边县| 兴义市| 赫章县| 抚州市| 北京市| 桐乡市| 卢湾区| 台南县| 瓮安县| 隆昌县| 马关县| 咸丰县| 囊谦县| 河西区| 江城| 攀枝花市| 巴青县|