100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Gauss-Bonnet-Chern theorem for singular spaces and Donaldson-Thomas theory

发布时间:2018-06-21 作者: 浏览次数:
Speaker: 蒋云峰 教授 DateTime: 2018年6月25日(周一)上午10:00-11:00
Brief Introduction to Speaker:
蒋云峰教授,美国堪萨斯大学。
Place: 六号楼二楼报告厅
Abstract:The Gauss-Bonnet-Chern theorem states that for a smooth compact complex manifold,the integration of the top Chern class is the topological Euler characteristic of the manifold.In order to study Chern class for singular spaces,R. MacPherson introduced the notion of local Euler obstruction.A characteristic class for a local Euler obstruction was defined by using Nash blow-ups, and is called the Chern-Mather class or Chern-Schwartz-MacPherson class. The Gauss-Bonnet-Chern theorem is generalized to singular spaces by the top Chern-Schwartz-MacPherson classes. Inspired by gauge theory in higher dimension and string theory, the curve counting theory via stable coherent sheaves was constructed by Donaldson-Thomas on projective 3-folds, which is now called the Donaldson-Thomas theory.
主站蜘蛛池模板: 百色市| 大冶市| 武义县| 阳曲县| 监利县| 海阳市| 肥西县| 五大连池市| 皮山县| 昌吉市| 长海县| 临泽县| 乐陵市| 元朗区| 从化市| 绥宁县| 博罗县| 巩留县| 商水县| 塔河县| 大渡口区| 包头市| 定州市| 凤庆县| 桃园市| 灵武市| 忻州市| 平和县| 改则县| 南川市| 察隅县| 鄢陵县| 汉中市| 滕州市| 彭州市| 全椒县| 青浦区| 美姑县| 大理市| 涟水县| 霞浦县|