100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

On Approximation and Its Approximatinos: Gauss versus Chebyshev, and Lagrange versus Hermite-Fej′er

发布时间:2018-05-31 作者: 浏览次数:
Speaker: 向淑晃教授 DateTime: 2018年6月2日(周六)下午 4:00-4:40
Brief Introduction to Speaker:

向淑晃教授,中南大学.

Place: 六号楼二楼报告厅
Abstract:Along the way to Bernstein (1912), Fej′er (1933), Curtis and Rabinowitz (1972), Riess and Johnson (1972), Trefethen (2008, 2013) etc., by building on the aliasing errors on integration of Chebyshev polynomials and using the asymptotic formulae on the coefficients of Chebyshev expansions, in this presentation, we will consider optimal general convergence rates for n-point Gauss, Clenshaw-Curtis and Fej′er’s first and second rules for Jacobi weights. All are of approximately equal accuracy. The convergence rate of these quadrature rules is up to one power of n better than polynomial best approximation. Further, we will introduce the optimal general convergence rates for Lagrange interpolation polynomials deriving from Gauss or Chebyshev points, and fast implementation of these polynomials by barycentric formulae. In addition, we will compare Lagrange interpolation with Hermilte-Fej′er interpolation for continuous functions. Finally, we consider some applications in acoustic sca...
主站蜘蛛池模板: 陵水| 镇安县| 三明市| 河西区| 大兴区| 永泰县| 宜都市| 彭州市| 临安市| 宽城| 巴彦县| 嘉鱼县| 磴口县| 石棉县| 建湖县| 麦盖提县| 洮南市| 昌宁县| 汤原县| 朝阳县| 石楼县| 万山特区| 富宁县| 自贡市| 定州市| 民县| 广丰县| 津市市| 九寨沟县| 兴山县| 丽水市| 兰州市| 淅川县| 闻喜县| 陆河县| 从江县| 双辽市| 营山县| 深泽县| 昂仁县| 汝阳县|