100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Continuous Time Hidden Markov Model for Longitudinal Data

发布时间:2018-03-16 作者: 浏览次数:
Speaker: 周洁 DateTime: 2018年3月17日(周六)下午3:30-4:30
Brief Introduction to Speaker:

周洁,首都师范大学。

Place: 六号楼二楼报告厅
Abstract:Hidden Markov models (HMMs) describe the relationship between two stochastic processes, namely, an observed outcome process and an unobservable finite-state transition process. Given their ability to model dynamic heterogeneity, HMMs are extensively used to analyze heterogeneous longitudinal data. A majority of early developments in HMMs assume that observation times are discrete and regular. This assumption is often unrealistic in substantive research settings where subjects are intermittently seen and the observation times are continuous or not predetermined. However, available works in this direction are few and restricted only to certain special cases. In this article, we consider a general continuous-time HMM with an unknown number of hidden states. The proposed model is highly flexible, thereby enabling it to accommodate different types of longitudinal data that are regularly, irregularly, or continuously collected.
主站蜘蛛池模板: 运城市| 望谟县| 保山市| 龙川县| 稻城县| 鄂托克前旗| 东平县| 门源| 宝山区| 亚东县| 江阴市| 惠来县| 长海县| 湛江市| 河间市| 桐柏县| 泾川县| 威海市| 临邑县| 白河县| 兴城市| 建阳市| 砚山县| 华池县| 蒙阴县| 阳谷县| 梅州市| 顺平县| 仙游县| 宁南县| 天气| 金坛市| 阆中市| 绥阳县| 呼伦贝尔市| 乡宁县| 上栗县| 沅江市| 柳州市| 盐源县| 灌阳县|