100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

High dimensional semiparametric estimate of latent covariance matrix for matrix-variate

发布时间:2018-03-16 作者: 浏览次数:
Speaker: 赵俊龙 DateTime: 2018年3月17日(周六)上午8:30–9:30
Brief Introduction to Speaker:

赵俊龙,北京师范大学副教授

Place: 六号楼二楼报告厅
Abstract:Estimation of the covariance matrix of high dimensional matrix-variate is an important issue. Many methods have been developed, based on sample covariance matrix under the Gaussian or sub-Gaussian assumption. However, sub-Gaussian assumption is restrictive and the estimate based on the sample covariance matrix is not robust. In this paper, we consider the estimate of covariance matrix for high dimensional matrix-variate in the frame of transelliptical distribution and the Kendall's $\tau$ correlation. Since the covariance matrix of matrix-variate is commonly assumed to own some low dimension structure, we consider the structure of Kronecker expansion in this paper. The asymptotic results of the estimator are established. Simulation results and real data analysis confirm the effectiveness of our method.
主站蜘蛛池模板: 巴中市| 梁山县| 陕西省| 长宁县| 台南县| 大兴区| 安新县| 萍乡市| 自贡市| 武功县| 武冈市| 松潘县| 宾川县| 江油市| 吴忠市| 密云县| 高州市| 汶川县| 那坡县| 翁源县| 进贤县| 江达县| 南岸区| 桂林市| 凤凰县| 当雄县| 修水县| 五寨县| 龙川县| 嘉荫县| 漾濞| 蒲城县| 南陵县| 股票| 赣榆县| 达日县| 古田县| 来宾市| 浪卡子县| 蛟河市| 龙川县|